Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens.
نویسندگان
چکیده
Multifunctional nanoparticles possessing magnetization and near-infrared (NIR) absorption have warranted interest due to their significant applications in magnetic resonance imaging, diagnosis, bioseparation, target delivery, and NIR photothermal ablation. Herein, the site-selective assembly of magnetic nanoparticles onto the ends or ends and sides of gold nanorods with different aspect ratios (ARs) to create multifunctional nanorods decorated with varying numbers of magnetic particles is described for the first time. The resulting hybrid nanoparticles are designated as Fe(3)O(4)-Au(rod)-Fe(3)O(4) nanodumbbells and Fe(3)O(4)-Au(rod) necklacelike constructs with tunable optical and magnetic properties, respectively. These hybrid nanomaterials can be used for multiplex detection and separation because of their tunable magnetic and plasmonic functionality. More specifically, Fe(3)O(4)-Au(rod) necklacelike probes of different ARs are utilized for simultaneous optical detection based on their plasmon properties, magnetic separation, and photokilling of multiple pathogens from a single sample at one time. The combined functionalities of the synthesized probes will open up many exciting opportunities in dual imaging for targeted delivery and photothermal therapy.
منابع مشابه
Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes.
A rapid and sensitive method was developed here for separation and detection of multiple pathogens in food matrix by magnetic surface-enhanced Raman scattering (SERS) nanoprobes. Silica-coated magnetic probes (MNPs@SiO(2)) of ~100 nm in diameter were first prepared via the reverse microemulsion method using cetyltrimethylammonium bromide as a surfactant and tetraethyl orthosilicate as the silic...
متن کاملSub-10 nm Fe3O4@Cu(2-x)S core-shell nanoparticles for dual-modal imaging and photothermal therapy.
Photothermal nanomaterials have recently attracted significant research interest due to their potential applications in biological imaging and therapeutics. However, the development of small-sized photothermal nanomaterials with high thermal stability remains a formidable challenge. Here, we report the rational design and synthesis of ultrasmall (<10 nm) Fe3O4@Cu2-xS core-shell nanoparticles, w...
متن کاملOptical Limiting Properties of Colloids Enhanced by Gold Nanoparticles Based on Nonlinear Refraction for Cw Laser Illumination
In this work, thermo-optical properties of gold nanoparticle colloids are studied using continuous wave (CW) laser irradiation at 532 nm. The nanoparticle colloids are fabricated by 18 ns pulsed laser ablation of pure gold plate in the distilled water. The formation of the nanoparticles has been evidenced by optical absorption spectra and transmission electron microscopy. The nonlinear optical ...
متن کاملSynthesis of Multifunctional Magnetic NanoFlakes for Magnetic Resonance Imaging, Hyperthermia, and Targeting.
Iron oxide nanoparticles (IOs) are intrinsically theranostic agents that could be used for magnetic resonance imaging (MRI) and local hyperthermia or tissue thermal ablation. Yet, effective hyperthermia and high MR contrast have not been demonstrated within the same nanoparticle configuration. Here, magnetic nanoconstructs are obtained by confining multiple, ∼ 20 nm nanocubes (NCs) within a deo...
متن کاملPotential Use of DNA Aptamer-Magnetic Bead Separation-PCR Assay for Salmonella Detection in Food
Background: Salmonella is one of the most common food-borne pathogens that can cause illness. In this study, the sensitivity and the specificity of Aptamer-Magnetic bead Separation-Polymerase Chain Reaction (AMS-PCR) method were determined for Salmonella spp. detection. Methods: Different concentrations of Salmonella enterica were mixed with streptavidin-magnetic beads coated with biotinylated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 6 2 شماره
صفحات -
تاریخ انتشار 2010